
Ohjelmistoprojekti 2
Tervetuloa Ohjelmistoprojekti 2 -kurssille! 👋



Käytänteet

Kurssilla toteutetaan tiimissiä ohjelmistoprojekti tiimin muodostamasta aiheesta

Projekti etenee kolmen viikon iteraatioissa kahden opetusperiodin ajan

Jokaisen iteraation aluksi tiimi suunnittelee iteraation aikana ohjelmistoon toteutettavat

toiminallisuudet

Iteraation aikana tiimi toteuttaa suunnitteltuja toiminallisuuksia itsenäisesti sekä opettajan

ohjauksessa

Iteraation päätteeksi tiimi esittää opettajalle projektin edistymistä ja saavat palautetta

Opetusta järjestetään viikottain ja läsnäolossa noudatetaan Haaga-Helian

läsnäolokäytänteitä. Aktiivinen läsnäolo vaikuttaa arviointiin



Arviointi

Kurssin arviointi perustuu seuraaviin tekijöihin:

Tiimityöskentelyn sujuvuuteen ja prosessin noudattamiseen

Tiimin lopullisen tuloksen tarkoituksenmukaiseen toimivuuteen

Kurssin lopuksi yksilötyönä tehtävään loppuraporttiin, jossa arvioidaan omaa ja tiimin

toimintaa

Arviointi koostuu tiimin tuotoksesta ja tiimin jäsenen omasta panoksesta projektin eteen.

Jokainen tiimissä ei siis välttämättä saa samaa arvosanaa

Arvioinnin tukena käytetään kurssin aikana tehtävää itseis- ja vertaisarviointia

Tarkat arviointikriteerit löytyvät kurssisivulta



Prosessien merkitys ohjelmistotuotannossa

"If you go forward 24 months from now, or some amount of time – I can’t exactly predict where

it is – it’s possible that most developers are not coding. It just means that each of us has to get

more in tune with what our customers need and what the actual end thing is that we’re going to

try to go build because that’s going to be more and more of what the work is as opposed to

sitting down and actually writing code." ⎯ Matt Garman, AWS:n toimitusjohtaja vuonna 2024

Tulevaisuudessa ohjelmistojen monimutkaisuus kasvaa entisestään, mikä lisää

ohjelmistoprojektien vaatimustenhallinnan tarvetta sekä kehitystyön koordinoinnin ja hallinnan

merkitystä

Ohjelmistokehittäjän rooli laajenee jatkuvasti ja teknisen toteutuksen ohella työ painottuu yhä

enemmän asiakkaan tarpeiden ymmärtämiseen, teknisten ja toiminnallisten vaatimusten

määrittelyyn sekä ohjelmiston laadunhallintaan

Tiimin yhteinen prosessi mahdollistaa monimutkaisten kokonaisuuksien hallinnan tehokkaasti



Ketterä ohjelmistokehitys

"When to use iterative development? You should use iterative development only on projects

that you want to succeed." ⎯ Martin Fowler

Ohjelmistoprojekteissa toteutaan ohjelmistoja, jotka perustuvat johonkin tarpeeseen, jonka

määrittelee ohjelmistoprojektin asiakas

Ohjelmistokehittäjien tehtävä on muodostaa asiakkaan tarpeista toteuttamiskelpoisia teknisiä

vaatimuksia ja toteuttaa ne sopivilla teknologioilla

Tarpeiden selvittäminen vaatii jatkuvaa suoraa viestintää asiakkaan kanssa. Tarpeilla on myös

tapana muuttua ja tarkentua ohjelmistoprojektin edetessä

Ohjelmistotuotannossa sovelletaan nykyisin laajalti nk. ketteriä menetelmiä, jotka korostavat

mm. suoraa viestintää sidosryhmien kanssa ja nopeaa muutoksiin reagointia

Ketterät menetelmät ovat iteratiivinen vaihtoehto perinteisille vaiheellisille

ohjelmistotuotantoprosesesseille, kuten vesiputousmalli



Iteratiivisuus

ketterässä
ohjelmistokehityksessä

Jotta muutoksiin voitaisiin vastata

nopeasti, ketterille prosesseille on

tyypillistä, että ohjelmistoa kehitetään

lyhyissä iteraatioissa

Jokaisen iteraation aikana suoritetaan

kaikki ohjelmiston elinkaareen vaiheet

vaatimusmäärittelystä

tuotantoonvientiin



Scrum

Kurssin ohjelmistoprojektin projektinhallinnassa noudatetaan suuren suosion saavuttanutta

ketteriä menetelmiä soveltavaa Scrum-viitekehystä

Vuonna 2024 julkaistun 17th State of Agile Report -raportin mukaan 63% vastaajista käytti

ohjelmistotuotannon prosessinaan Scrumia

Scrum määrittelee ohjelmistokehitykselle iteratiivisen prosessin, joka etenee tyypillisesti 1-4

viikon iteraatioissa, joita kutsutaan sprinteiksi

Sprintin aikana ohjelmistoon tuotetaan inkrementaalisesti uutta julkaisukelpoista

toiminallisuutta

Kurssilla sprintin pituus on kolme viikkoa



Scrumin roolit

Ohjelmistoprojektista vastaa Scrum-tiimi, jossa on kolme erilaista roolia

Ohjelmiston toteutuksesta vastaa kehittäjätiimi, joka koostuu tyypillisesti 3-9

ohjelmistokehittäjästä

Sprintin aikana kehittäjätiimi toteuttaa itseorganisoidusti sprinttiin valitut ohjelmiston

toiminnallisuudet

Scrum master on usein kehittäjätiimin jäsen, joka toimii sen apuna ohjaten mm. prosessin

noudattamisessa ja parantamisessa

Tuoteomistaja (product owner) määrittelee ja priorisoi kehittäjätiimin työtä hallinnoimalla

projektin product backlogia, joka sisältää priorisoidussa järjestyksessä projektissa

toteutettavalle ohjelmistolle asetetut vaatimukset



Scrumin tapahtumat

Scrumissa käytetään ennaltasovittuja tapahtumia, jotka toistuvat jokaisessa sprintissä

Sprintti alkaa sprintin suunnittelulla (sprint planning), jonka aikana päätetään mitä

toiminallisuutta sprintin aikana toteutetaan

Sprintin aikana järjestetään lyhyitä kehittäjätiimin sisäisiä päiväpalavereja (daily scrum), joissa

jokainen tiimin jäsen kertoo vuorallaan, miten kehitystyö etenee

Sprintti päättyy sprinttikatselmukseen (sprint review), jonka aikana kehittäjätiimi esittelee

sprintin aikana toteutetut toiminallisuudet kaikille kehitettävästä tuotteesta kiinnostuneille

sidosryhmille

Sprintin päätteeksi järjestetään retrospektiivi, jossa kehittäjätiimi tarkastelee Scrum masterin

johdolla omaa työskentelyprosessiaan ja pyrkivät kehittämään sitä





Tiimien muodostaminen ja aiheen ideointi

1. Jakaudutaan noin 4-5 hengen tiimeihin

2. Tehkää tiimin sisällä lyhyt esittelykierros. Jokainen voi kertoa vuorollaan esimerkiksi:

Minkälainen tausta on opinnoissa tai mahdollisesti työelämässä?

Mitkä ovat omat kiinnostuksen kohteet ohjelmistokehityksessä?

Mitkä ovat omat vahvuusalueet ohjelmointikielissä, tai muissa toteutusteknologioissa?

Mitä odotuksia on kurssin suhteen?

3. Valitkaa tiimillenne nimi

4. Alkakaa ideoimaan yhdessä ohjelmistoprojektin aihetta



Aiheen valinta ja rajaus

Projektissa ei välttämättä ole ulkoista tuoteomistajaa, vaan tiimi toimii itse tuoteomistajan

roolissa

Tiimi joutuu tällöin itse määrittelemään projektin vaatimuksia ja priorisoimaan niitä

Aiheen ideoinnissa voi lähteä liikkeelle laajasta ideasta, kuten "kurssiarvostelu-sovellus", tai

"sanaston harjoittelu -peli"

Tämän jälkeen laajasta ideasta voi muodostaa konkreettisia toiminallisuuksia priorisoiden

käyttäjän kannalta tärkeimpiä toiminallisuuksia

Aluksi kannattaa tähdätä Minimum Viable Product (MVP) -toteutukseen, josta toiminallisuutta

voi lähteä laajentamaan

Näin vältetään nk. "Scope creep"-ilmiötä, jossa projektin laajuus leviää hallitsemattomasti, eikä

projektin ydintoiminnallisuus valmistu järkevässä aikataulussa



Aiheen valinta ja rajaus

"Keep it simple, stupid!"

⎯ KISS-periaate

Yksinkertainen ja toimiva sovellus on käyttäjän kannalta mielekkäämpi kuin suuret ja

yksityiskohtaiset suunnitelmat hienosta sovelluksesta, jota ei koskaan ehditty toteuttaa


